NYU Stern: Forecasting Time Series Data Professor Clifford Hurvich Jasper Chang, 2020

JP Morgan China Fund

JPM (A) USD

Forecasting Time Series: Final Project 2

Data Set Used: JP Morgan (A) China Fund

Data used is a 5 year time span, daily increments of closing NAVs from 11/9/2015 to 11/9/2020, data taken from JP Morgan, amounting to a total of 1236 data points: Link

Preliminarily, the LogNAV is non-stationary and the FirstDiff (of the logs) is approximately stationary, with a lot of white noise but no clear signs for level-dependent volatility.

As per the ACFs and PACFs of both the first differences and the LogNAVs, a possible (3,1,3) ARIMA is predicted; this is despite the fact that there seems to exist significant spikes at lag 6.

Without Constant							With Constant					
N	р	d		q	SS	AICc	N	р	d	q	SS	AICc
	1235	0	1	3	0.238019	-10556.4428	1235	0	1	3	0.237478	-10559.25306
	1235	1	1	3	0.237679	-10556.1919	1235	1	1	3	0.237093	-10559.24057
	1235	3	1	1	0.237693	-10556.11916	1235	3	1	1	0.237111	-10559.14681
	1235	3	1	3	0.236991	-10555.72953	1235	3	1	3	0.236411	-10558.75572
	1235	2	1	2	0.237825	-10555.43351	1235	2	1	2	0.237227	-10558.54277
	1235	3	1	0	0.238282	-10555.07893	1235	3	1	0	0.237734	-10557.92245
	1235	3	1	2	0.237646	-10554.3438	1235	2	1	3	0.237018	-10557.61172
	1235	2	1	3	0.237706	-10554.03203	1235	3	1	2	0.237078	-10557.29912
	1235	0	1	0	0.240018	-10552.14325	1235	0	1	1	0.239334	-10553.66127
	1235	1	1	0	0.240014	-10550.15734	1235	1	1	0	0.239334	-10553.66127
	1235	0	1	1	0.240015	-10550.15219	1235	1	1	2	0.238614	-10553.3594
	1235	2	1	1	0.239301	-10549.80878	1235	0	1	2	0.239053	-10553.10236
	1235	0	1	2	0.239693	-10549.8004	1235	2	1	0	0.23909	-10552.91123
	1235	2	1	0	0.239726	-10549.63038	1235	2	1	1	0.238723	-10552.79537
	1235	1	1	1	0.239844	-10549.02263	1235	1	1	1	0.239235	-10552.16247
	1235	1	1	2	0.239512	-10548.72032	1235	0	1	0	0.243134	-10536.21322

As per the AICc calculations, the best model is the (0,1,3) with a constant.

Final Estimates of Parameters

Туре		Coef	SE Coef	T-Value	P-Value	
MA	1	0.0045	0.0284	0.16	0.875	
MA	2	-0.0328	0.0284	-1.16	0.248	
MA	3	-0.0898	0.0285	-3.15	0.002	
Con	stant	0.000742	0.000442	1.68	0.093	

From this model, these are the final parameters:

 $x_t \text{-} x_{t\text{-}1} \text{=} \epsilon_t \text{-} 0.0045 \epsilon_{t\text{-}1} \text{+} 0.0328 \epsilon_{t\text{-}2} \text{+} 0.0898 \epsilon_{t\text{-}3} \text{+} 0.000742$

Assuming:

 X_t here is the price of the fund at time t.

Forecasts from period 1235

95% Limits Period Forecast Lower Upper Actual 1236 4.30541 4.27818 4.33264 4.32757

 $f_{1235,1} = 4.30541$

As shown here, the forecast from 1235 for period 1236 is not entirely accurate, slightly understating the actual value (albeit falling within the 95% confidence interval).

^ Time Series/ACF/PACF of RES1

^ Time Series/ACF/PACF of SQRRES1 (squared)

Residuals are approximately uncorrelated and squared residuals are not uncorrelated with each other, all in all indicating that residuals are conditionally heteroskedastic.

b1

Model	q	LogLikelihood	AICc
ARCH(0)	0	3531.254	-7060.504756
ARCH(1)	1	3541.413	-7078.81626
ARCH(2)	2	3565.955	-7125.890504
ARCH(3)	3	3592.192	-7176.35148
ARCH(4)	4	3605.441	-7200.83318
ARCH(5)	5	3611.99	-7211.911596
ARCH(6)	6	3610.565	-7207.03872
ARCH(7)	7	3608.5	-7200.882545
ARCH(8)	8	3607.18	-7196.213061
ARCH(9)	9	3606.605	-7193.030261
ARCH(10)	10	3604.074	-7185.932137
GARCH(1,1)	2	3630.3	-7254.580504
>	<pre>model\$</pre>	coef	

a1

2.854161e-06 7.119571e-02 9.150364e-01

a0

According to the AICc process of selecting the best model for the residuals (on R), the GARCH(1,1) model is the most suitable.

GARCH(1,1): $h_{t+1}=2.854e-06 + 7.12e-02\varepsilon_t + 9.15e-01 h_t$

Unconditional variance as per a0/[1-(a1+b1)]: 0.0002073

Call: garch(x = x, order = c(1, 1), trace = F)The GARCH(1,1) summary are as follows: Model: GARCH(1,1) Residuals: Min 1Q Median 3Q Max -4.86662 -0.56496 0.04321 0.66558 3.10113 Coefficient(s): Estimate Std. Error t value Pr(>|t|) 2.964 0.00304 ** a0 2.854e-06 9.629e-07 7.428 1.1e-13 *** a1 7.120e-02 9.584e-03 77.502 < 2e-16 *** b1 9.150e-01 1.181e-02 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Diagnostic Tests: Jarque Bera Test data: Residuals X-squared = 134.73, df = 2, p-value < 2.2e-16 Box-Ljung test data: Squared.Residuals X-squared = 2.5863, df = 1, p-value = 0.1078

The one-step forecast, aforementioned and calculated, was $f_{1235,1} = 4.30541$.

$$\begin{split} H_{1236} &= 2.854e\text{-}06 + 7.12e\text{-}02\epsilon_t^2 + 9.15e\text{-}01h_{1235} \\ &= 2.854e\text{-}06 + 7.12e\text{-}02\text{*}0.000742^2 + 9.15e\text{-}01\text{*}0.0002173352 \\ &= 0.0002017549 \end{split}$$

Lower Bound = $f_{1235,1} - |z_{0.025}| * (h_{1236})^{0.5} = 4.30541 - 1.96 * 0.0002017549^{0.5} = 4.27757$ Upper Bound = $f_{1235,1} + |z_{0.025}| * (h_{1236})^{0.5} = 4.30541 + 1.96 * 0.0002017549^{0.5} = 4.33325$

Combined, this is a 95% confidence forecast interval of (4.27757,4.33325)

In comparison to the previous ARIMA((0,1,3)) 95% prediction interval of (4.27818,4.33264), the one with an added GARCH(1,1) has a forecast interval of (4.27757,4.33325), which is actually wider than the ARIMA((0,1,3)) by 0.00122. This means that the volatility now is slightly higher than the 5 year average.

The 5% percentile of the conditional distribution of the next period: $Q_{5\%} = f_{1235.1} - |z_{0.05}| * (h_{1236})^{0.5} = 4.30541 - 1.64 * (0.0002017549)^{0.5} = 4.282115$

With the current price of 75.76 (NAV) and a natural log of 4.32757, it effectively falls within the 95th confidence prediction interval for both the ARIMA((0,1,3) and the ARIMA((0,1,3)+GARCH((1,1)). This signifies that the range can fully encapsulate the data, but the volatility is an issue, as it falls close to the upper bound (might be a little too narrow).

After exporting the conditional variances into Minitab:

In comparison to the LogNAVs, the periods of higher volatility generally match for both time series plots, especially in regards to point 60, 744 and 1100. The volatilities do seem a bit more pronounced in the conditional variance graph, which is to be expected, as it measures the higher bursts of volatility.

^ Plot of LogNAV with ARIMA-GARCH one-step 95% forecast intervals

As shown by the shape of the probability plot for ht, the residuals for the ARIMA-ARCH model are almost entirely normal (with noticeable light tails at the top), indicating that leptokurtosis is explained well, to a certain degree.

The small p-value claims rejection against the null hypothesis.

There are a total of **41 errors**, amounting to a **3.3% probability of failure.** All in all, this maintains the hypothesis that the ARIMA-ARCH model is a good fit and predictor for this data set.