Forecasting Project 1

Jasper Chang

Data Set Used: JP Morgan (A) China Fund

Data used is a 5 year time span, daily increments of closing NAVs from 11/9/2015 to 11/9/2020, data taken from JP Morgan, amounting to a total of 1236 data points: JPM Asset Management

As shown by this preliminary time series plot, the data is **non-stationary** (d=1), but also has an **upwards trend** with regional **volatility** that could possibly be better measured in levels. There are also no apparent seasonal or cyclical patterns. Data points towards the end of the time span (Q3 2020) seem to be much higher than normal, which may seem a bit more suited towards an exponential function, but using an ARIMA with a confidence interval should still be better because value-growth is better captured.

Here, we conduct a preliminary ACF and PACF on prices/NAV to better gauge the solutions towards modeling this data.

As shown by the ACF and PACF, the ACF is too significant and decreases too slowly, towards lag 80, which means that it may not be able to be properly solved. From PACF, the main spike comes from a highly positive lag 1, then instantly falls into the range of insignificance, showing possible signs of AR(1). But all in all, especially as shown by the ACF, **differencing must be used** to create a stationary data set.

Applying the first difference (lag + difference):

The data is now stationary, where it reverts and oscillates around an arithmetic mean of 0.0367.

Then, to apply the ARIMA (p,d,q) model, we need to find and determine the most suitable parameters.

To do this, run an ACF and PACF to determine the best p, q values (d = 1).

To start off, **overdifferencing is not an issue** as the first lag is basically at 0. This means that, in the most fundamental way, the "first difference" is a sound way to begin looking for AR/MA models. From both the ACF and the PACF, the data generally becomes **less significant after lag 3**, which means that we are going to be exploring the AICcs for all the values of p, q within the range **{0,1,2,3}**.

To begin the process of determining the best fit AICc, we need to set the preface: N= 1236-1 = 1235And the following equations:

$$AIC_{C} = N \log\left(\frac{SS}{N}\right) + 2(p+q+1) \frac{N}{N-p-q-2} \qquad \qquad AIC_{C} = N \log\left(\frac{SS}{N}\right) + 2(p+q+2) \frac{N}{N-p-q-3} \qquad \qquad (\text{with constant})$$

Without Constant					
N	р	d	q	SS	AICc
1235	0	1	3	428.783	-1298.443457
1235	3	1	1	428.249	-1297.966167
1235	3	1	0	429.093	-1297.550904
1235	1	1	3	428.682	-1296.718097
1235	2	1	3	428.058	-1296.497519
1235	2	1	2	428.801	-1296.375314
1235	3	1	2	428.25	-1295.943699
1235	0	1	2	430.975	-1294.159068
1235	2	1	1	430.333	-1293.987128
1235	3	1	3	428.248	-1293.926591
1235	2	1	0	431.239	-1293.402782
1235	0	1	0	433.641	-1290.559175
1235	1	1	0	433.622	-1288.606792
1235	0	1	1	433.625	-1288.598247
1235	1	1	1	432.969	-1288.458248
1235	1	1	2	433.597	-1284.655216

From these tests, the smallest AICc value comes down to ARIMA (0,1,3) with a constant.

Final Estimates of Parameters

Туре		Coef S	E Coef T	-Value P	-Value
MA	1	0.0100	0.0285	0.35	0.727
MA	2	-0.0744	0.0284	-2.62	0.009
MA	3	-0.0743	0.0287	-2.59	0.010
Con	stant	0.0370	0.0191	1.94	0.053

From this model, these are the final parameters:

$$x_t - x_{t-1} = \varepsilon_t - 0.01\varepsilon_{t-1} + 0.0744\varepsilon_{t-2} + 0.0743\varepsilon_{t-3} - 0.037$$

Assuming:

 X_t here is the price of the fund at time t.

Modified Box-Pierce (Ljung-Box)

Lag	12	24	36	48
Chi-Square	8.19	42.32	59.94	69.35
DF	8	20	32	44
P-Value	0.416	0.003	0.002	0.009

From the Ljung-Box test, the output P-value is only greater than 0.05 for lag 12, but not 24, 36, or 48. **The model is inadequate and the null is rejected.** This means we should take a look at the ACF/PACF of the residuals to get a better idea of the discrepancies.

According to the ACF and PACF of the residuals, there are **many significant points after lag 14** in which the residuals are overly autocorrelated or partially autocorrelated, including lags 22, 23, 55, and 58. These are not signs of seasonality, but rather, signs that the data **cannot be properly described** with an ARIMA model, as there is too much volatility and interference in the latter parts of the NAV time series. This up-down "noise" is not a regular trend and only shows up periodically, meaning that there were tangible market impacts/movements during those time periods.

Since data was a daily, five year range, we can approximate the years in which these issues are occurring. In 2016, the Chinese equity market saw a shift from manufacturing into service industries, slowing down. 2018 had high real estate market instability, which saw the performance of global equity markets plummet, especially in China. The reasons for this also carried on to 2019 and Q3 2020: the **US-China relationship/trade-war as well as the tightening of monetary policies in developed markets.** These are all macroeconomic signals that cannot be properly accounted for, and therefore support the Ljung-Box Test that the model is **inadequate**.

To further explore this idea of data inadequacy, we have plotted the residuals of the NAVs to better visualize the distributions.

From the histogram and the normal probability plot, the distribution looks **approximately normal**, except a possible **skew towards the positive right side**. As seen from the "Versus Fits" graph, there is apparent **heteroscedasticity**, translating to the smaller-than-actual P-values. From the "Versus Order" graph, which is increased in size (see below), there appears to be large (possibly increasing in frequency) up/downward spikes from halfway. The past year from 1000-1250 shows the increase in volatility as a result of the COVID crisis and US election, but overall, it shows **no signs of correlation** as data exhibits almost-normal random white noise by 0.

Unto the forecasting portion, a 95% interval was used with a lead time of 150.

From this forecast, the range seems initially reasonable given the rate of growth it has seen in the past 300 data NAV data points; but, given the general decline in Chinese economic growth and large accumulation of forex as per political choices, *this growth rate is unlikely to continue in the long run.* The interval seems **too wide**, as the range of the 150 forecasts is covering approximately 40% of the overall NAV span. On a different note, however, current market overvaluation and inefficiency may contribute towards higher

values in the short term 1-2 year span, as the strong Chinese rebound from COVID put strong confidence into its markets. This forecast **captures the general short-term positive outlook.**

Below: See 150 period forecasts for ARIMA (0,1,3) & constant, for the JPM (A) Fund.

Period	Forecast	Lower	Upper	Period		Forecast
7	75 94528512	74,79003039	77.10053986	1312		78 9260693
38	76.07270816	74.44704802	77.69836829	1312		78.96303113
39	76.22785587	74.18949011	78.26622163	1314		78.99999296
40	76.2648177	73.83881084	78.69082457	1315		79.03695479
41	76.30177953	73.54205424	79.06150481	1316		79.07391662
42	76.33874136	73.28151091	79.3959718	1317		79.11087844
243	76.37570319	73.04745555	79.70395082	1318	79	14784027
244	76.41266501	72.8338654	79.99146462	1319	79.18	48021
245	76.44962684	72.63670395	80.26254974	1320	79.221	76393
246	76.48658867	72.45310936	80.52006798	1321	79.2587	2575
247	76.5235505	72.28096524	80.76613576	1322	79.29568	758
1248	76.56051232	72.11865415	81.0023705	1323	79.33264	941
1249	76.59747415	71.96490701	81.2300413	1324	79.36961	124
1250	76.63443598	71.81870626	81.4501657	1325	79.406573	07
1251	76.67139781	71.67922122	81.66357439	1326	79 443534	89
1252	76.70835964	71.54576326	81.87095601	1327	79 480496	72
253	76.74532146	71.41775394	82.07288899	1328	79.5174585	5
254	76.78228329	71.29470185	82.26986473	1329	79 5544203	8
255	76.81924512	71.17618528	82.46230496	1330	79 591 3822	1
256	76.85620695	71.0618391	82.65057479	1331	79.6283440	3
257	76.89316877	70.95134472	82.83499283	1332	79.6653058	6
258	76.9301306	70.84442215	83.01583906	1332	79.0033038	0
259	76,96709243	70,74082374	83.19336112	1333	79.7022076	9
260	77.00405426	70.64032924	83.36777927	1334	79.7392295	
261	77.04101609	70.54274167	83.5392905	1335	70.0101010	4
262	77.07797791	70.44788404	83.70807179	1336	79.8131531	7
263	77 11493974	70.35559664	83.87428284	1337	79.850115	2
264	77 15100157	70.333339004	84 03806930	1338	79.8870768	3
265	77 1999634	70.203/34/5	84 10056007	1339	79.9240386	6
265	77 22592522	70.1/8100/3	84 35897907	1340	79.9610004	8
200	77.22582522	70.09277243	04.5588/8UZ	1341	79.9979623	1
207	77.20278705	60.03807300	04.51013224	1342	80.0349241	4
208	77.29974888	09.92807598	04.0/1423/8	1343	80.0718859	7
269	77.33671071	09.84857575	84.82484566	1344	80.1088477	9
270	77.37367254	69.77086125	84.97648382	1345	80.1458096	2
271	77.41063436	69.69485094	85.12641779	1346	80.1827714	5
.272	77.44759619	69.62047104	85.27472134	1347	80.2197332	8
273	77.48455802	69.54765292	85.42146311	1348	80.2566951	1
.274	77.52151985	69.47633266	85.56670703	1349	80.2936569	3
275	77.55848168	69.40645057	85.71051278	1350	80.3306187	6
276	77.5954435	69.33795081	85.85293619	1351	80.3675805	9
277	77.63240533	69.2707811	85.99402957	1352	80.4045424	2
278	77.66936716	69.20489233	86.13384199	1353	80.4415042	5
279	77.70632899	69.14023837	86.27241961	1354	80.4784660	7
280	77.74329081	69.07677578	86.40980585	1355	80.5154279	
281	77.78025264	69.01446362	86.54604166	1356	80.5523897	3
282	77.81721447	68.95326323	86.68116571	1357	80.5893515	6
83	77.8541763	68.89313808	86.81521451	1358	80.6263133	8
84	77.89113813	68.83405359	86.94822266	1359	80 6632752	1
85	77.92809995	68.775977	87.08022291	1360	80 70022752	± 4
86	77.96506178	68.71887722	87.21124634	1361	80.7002370	4
87	78.00202361	68.66272475	87.34132247	1301	80.7371988	/
88	78.03898544	68.60749152	87.47047936	1362	80.7741607	
289	78.07594726	68.55315083	87.5987437	1363	80.8111225	2
90	78.11290909	68.49967726	87.72614092	1364	80.8480843	5
91	78.14987092	68.44704656	87.85269528	1365	80.8850461	8
92	78.18683275	68.39523559	87.97842991	1366	80.9220080	1
293	78 22379459	68.34422225	88.1033669	1367	80.9589698	3
294	78 2607564	68 29398542	88 22752729	1368	80.9959316	6
205	70.200/004	69 24450402	00.22/02/08	1369	81.0328934	9
295	70.297/1823	69 10576137	00.33093155	1370	81.0698553	2
1296	78.33468006	08.19576137	88.47359875	1371	81.1068171	5
1297	78.37164189	68.14773624	88.59554753	1372	81.1437789	7
298	78.40860372	68.10041178	88.71679565	1373	81.1807408	
299	78.44556554	68.05377093	88.83736016	1374	81.2177026	3
300	78.48252737	68.00779732	88.95725742	1375	81.2546644	6
1301	78.5194892	67.96247523	89.07650317	1376	81.2916262	9
302	78.55645103	67.91778954	89.19511252	1377	81.3285881	1
1303	78.59341285	67.8737257	89.31310001	1378	81.3655499	4
1304	78.63037468	67.83026973	89.43047963	1379	81,4025117	7
.305	78.66733651	67.78740814	89.54726488	1380	81 4394736	1
306	78.70429834	67.74512795	89.66346873	1381	81 4764254	2
307	78.74126017	67.70341663	89.7791037	1361	01.4704354. 91.5133073	2
308	78.77822199	67.6622621	89.89418189	1382	81.5133972	2
309	78.81518382	67.62165271	90.00871493	1383	81.55035908	8
10	78.85214565	67.58157721	90.12271409	1384	81.58732091	
11	78.88910748	67.54202471	90.23619025	1385	81.6242827	4
				1386	81.66124456	5